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Questions 1–22 are worth 5 points each.

1. Let D be a connected and simply connected bounded region in the xy-plane and let ∂D
be smooth with a counterclockwise orientation. If F = 〈f, g〉 with f and g differentiable,
which of the following are true?

I.

∮
∂D

F · dr =

∫∫
D

(gy − fx) dA

II. If gy − fx = 1, then Area(D) =

∮
∂D

F · dr

III. If F is conservative, then Area(D) = 0

IV.

∮
∂D

F · dr =

∮
∂D

f dx + g dy

A. I, II, and IV only

B. I, III, and IV only

C. IV only

D. III and IV only

E. I, II, and III only

2. Let F = 〈y, x〉 and C be any path from (a, b) to (c, d), where (a, b) and (c, d) are distinct

points. Find

∫
C

F · dS.

A. 0 B. (ab+ cd)2 C. ab+ cd

D. ab− cd E. cd− ab
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3. Which of the following correctly parametrizes the surface S given as the part of the region
bounded by z = 9 and z = 25− x2 − y2 that satisfies y ≥ 0?

A. r(θ, z) = 〈cos(θ), sin(θ), z〉, 0 ≤ θ ≤ π, 9 ≤ z ≤ 25

B. r(x, y) = 〈x, y, 25− x2 − y2〉, 0 ≤ x ≤ 4, −
√

16− x2 ≤ q ≤
√

16− x2

C. r(x, y) = 〈x, y, 25− x2 − y2〉, −4 ≤ x ≤ 4, 0 ≤ y ≤
√

16− x2

D. r(θ, z) = 〈cos(θ), z, sin(θ)〉, 0 ≤ θ ≤ π, 9 ≤ z ≤ 25

E. None of the above

4. Evaluate the flux of the vector field F = 〈3x, x2 + y, exy − 2z〉 across the surface of the
closed cylinder which can be expressed as a union of two surfaces A and B which is
given by

A = {(x, y, z)|x2 + z2 = 9,−5 ≤ y ≤ 5}, B = {(x, y, z)|x2 + y2 ≤ 9, y = ±5}

The figure is illustrated below

3

y

z

x

5−5

A. 180π B. 0 C. 1080π

D. 90π E. 90(π − 1)
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5. Find the circulation

∮
C

F · dr where C is the triangle with vertices (−1, 0), (1, 0), and

(0, 2) oriented counterclockwise, and F = 〈ex, πx+ sin(πy)〉.

A. −2π B. 2π C. 2

D. 0 E. −π

6. Find the vector surface integral

∫∫
S

(∇× F) · dS for the vector field F = 〈ex, x− y2, z3〉

where S is the part of the ellipsoid
(x

2

)2
+
(y

2

)2
+
(z

5

)2
= 1 where z ≥ 0 with upward

pointing normal.

A. 4(π − 1) B. 4π C. π(4e− 1)

D. 0 E. π(1− 2e)

7. Evaluate

∫
C

sin(x) dx + z cos(y) dy + sin(y) dz where C is the ellipse 4x2 + 9y2 = 36,

oriented clockwise.

A. 4 B. 24 C. 9 D. 0 E. 1

8. Let F = 〈F1, F2, F3〉 such that the second order partials of the component functions are
continuous. Find div(curl(F)).

A. 〈0, 0, 0〉 B. −1 C. 0

D. 1 E. None of the above
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9. Let F be a vector field defined on a simply connected domain in R3 and φ be a scalar
function in R3. Which of the following are true?

I. ∇ · (∇× F) = 0

II. ∇× (∇φ) = 0

III. If F is conservative, then ∇ · F = 0

IV. If ∇× F = 0, then F is conservative

A. I, II, and IV only

B. I, III, and IV only

C. I, II, III, and IV

D. I and IV only

E. I and III only

10. Find the line integral of the vector field F = 〈x, y,−z〉 on the piecewise smooth path
indicated in the figure below. Note that the path is the boundary of the unit sphere
r(φ, θ) = 〈cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)〉 in the first octant 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ π/2.

z

xx

yy

A. 0 B. −π
2

C.
π

4
D.

π

8
E.

3π

8
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11. Let F = zk̂ be the vector field (in m/sec) of a fluid in R3. Calculate the flow rate (in
m3/sec) upward through the part of the plane z = 2 − 2x − y that lies above the first
quadrant.

A. 4
3
m3/sec B. 2

3
m3/sec C. 1

3
m3/sec

D. 0 m3/sec E. 8
3
m3/sec

12. Find the line integral of F = 〈1, y〉 around the ellipse
x2

9
+
y2

36
= 1 where x, y ≥ 0 oriented

clockwise.

A. −18 B. 21 C. 0

D. −15 E. None of the above

13. A is a vector field such that A = ∇×F where F = 〈x− y,−2y+ x, z〉. Evaluate the flux

of A,

∫∫
S

A · dS where S is the part of the inverted paraboloid z = 4 − x2 − y2, z ≥ 0

oriented such that the z component of the normal vector is positive.

A. 4π B. −2π C. 2π

D. π E. 8π

5A



MAC 2313 — Summer 2016 — Final Exam A

14. Consider the parametrization of a cycloid generated by the unit circle, which has the
parametrization

r(t) = 〈t− sin(t), 1− cos(t)〉 t ∈ [0, 2π]

Together with the line segment from the origin to (2π, 0). The curve is illustrated below,
note that the area enclosed by the curve is 3π.

y

x

r(t) = 〈t− sin(t), 1− cos(t)〉

Area = 3π

2π

Find the line integral

∮
C

F · dr of the vector field F =
〈
x2,

x

2

〉
on the curve oriented

counterclockwise.

A.
π

2
B.

3π

2
C.

9π2

2
D.

3π2

2
E. 0

15. Find the flux of ∇ × F over the surface S where F =

〈
x, y,

x

x2 + y2

〉
and S is the

boundary of the solid cone D of radius 1 and height 2, which is given by

D =
{

(x, y, z)
∣∣∣ 2
√
x2 + y2 ≤ z ≤ 2

}

A.
1− 2π

3
B.

4π

3
C.

2π

3

D. 0 E.
√

3

(
1

3
− π

3

)

16. Let F = 〈2x+ y, x〉. Evaluate

∫
C

F · dS where C is any path from (1, 2) to (5, 7).

A. 60 B. 0 C. 57 D. 4 E. 55

6A



MAC 2313 — Summer 2016 — Final Exam A

17. Evaluate the integral

∫∫
S

√
y2 + z2 dS where the surface is given parametrically by

r(u, v) = 〈v, 2 cos(u), 2 sin(u)〉, R = {(u, v)
∣∣∣0 ≤ u ≤ 1, 0 ≤ v ≤ 2π}.

A. 2π B. π
2

C. 8π D. 4π E. 0

18. Evaluate the integral
∫∫

S
F · n̂ dS where F = 〈x + y, 0, xz〉, r(u, v) = 〈u + 1, v, uv〉, and

0 ≤ u ≤ 1, 0 ≤ v ≤ 1 with the surface oriented so that the z component of the unit
normal vector is positive.

A. 5
12

B. −2
3

C. 3
2

D. −1
6

E. None of the above

19. Find the area of the part of the plane z = x+ 2y − 1 defined on the triangular region of
the xy-plane with vertices (0, 0), (1, 0), and (0, 1).

A. 3 B. 1
2

C.
√

1
2

D.
√
6
2

E. None of the above

20. Evaluate the flux

∫∫
S

F · dS of the vector field F = 〈x2y, 3y,−2xyz〉 Where S is the unit

sphere parametrized by r(φ, θ) = 〈cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)〉, where 0 ≤ θ ≤ 2π
and 0 ≤ φ ≤ π with outward pointing normal.

A. 2π B. 4π C. π

D. 0 E. None of the above

21. (Bonus) If F is a vector field defined on a simply connected region and ∇ · F = 0, then
there exists a vector field A such that ∇×A = F

A. TRUE B. FALSE

22. (Bonus) A conservative vector field is a vector field F = 〈f, g, h〉 which satisfies the cross
partial condition given by

∂f

∂y
=
∂g

∂x
,

∂g

∂z
=
∂h

∂y
,

∂h

∂x
=
∂f

∂z

A. TRUE B. FALSE

7A


